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ABSTRACT

This workshop paper presents the current status in the development of a new approach for the solution of the
Euler equations on Cartesian meshes with embedded boundaries in three dimensions on distributed and
shared memory architectures. The approach uses adaptively refined Cartesian hexahedra to fill the computa-

tional domain. Where these cells intersect the geometry, they are cut by the boundary into arbitrarily shaped
polyhedra which receive special treatment by the solver. The presentation documents a newly developed

multilevel upwind solver based on a flexible domain-decomposition strategy. One novel aspect of the work
is its use of space-filling curves (SFC) for memory efficient on-the-fly parallelization, dynamic re-partition-

ing and automatic coarse mesh generation. Within each subdomain the approach employs a variety reorder-

ing techniques so that relevant data are on the same page in memory permitting high-performance on cache-
based processors. Details of the on-the-fly SFC based partitioning are presented as are construction rules for

the automatic coarse mesh generation. After describing the approach, the paper uses model problems and 3-
D configurations to both verify and validate the solver. The model problems demonstrate that second-order

accuracy is maintained despite the presence of the irregular cut-cells in the mesh. In addition, it examines
both parallel efficiency and convergence behavior. These investigations demonstrate a parallel speed-up in
excess of 28 on 32 processors of an SGI Origin 2000 system and confirm that mesh partitioning has no effect

on convergence behavior.

INTRODUCTION

Recent years have witnessed the rapid maturation of embedded-boundary Cartesian approaches. The work in
references [1]-[7] (among many others) demonstrate that the approach can be used to robustly compute

flows around vehicles with a high degree of geometric complexity. This strength is largely due to the under-
lying observation that cells in these meshes are purely Cartesian (away from geometry) or arbitrarily shaped
polyhedra (where initially Cartesian hexahedra are clipped against the body's surface). Figure 1 illustrates

the types of cells found in these meshes. Note that cut-cells as shown in fig. lb may be split into any number
of unconnected regions by the geometry, such split-cells imply that the index space of the Cartesian hexahe-

dra will not, in general, be the same as that of the control volumes integrated by the solver.

The observation that cells in a Cartesian mesh are either cut or un-cut has important implications for both

mesh generation and solver efficiency. Since cut-cells are assumed to be arbitrarily shaped, the geometric
complexity of a particular configuration does not impact the mesh generation process, and thus mesh gener-
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a. c.

Figure 1: Types of cells in Cartesian meshes with embedded boundaries: a) a volume cell, b) a cut-cell,
c) a split-cell cut into two polyhedra.

ation systems like those in [2], [4], and [6] can be fully automated. Moreover since the vast majority of the

domain is discretized with simple hexahedra, the process can be extremely fast. As an example, the mesh
generator in ref. [2] produced approximately 1 x 106 cells/minute on moderately powered desktop worksta-
tions in 1997 [2].

Advocates of Cartesian approaches often note that solvers which take advantage of these meshes may use
simplified discretization formulae in the pure Cartesian cells off-body and yet still take extra care to accu-

rately integrate the cut-cells which have embedded geometry. Such arguments note that un-cut cells fill the
volume of space around the geometry. Thus, while a typical mesh may contain O(N 3) off-body cells, only
O(N 2) cut-cells actually intersect the body itself. Following this reasoning, one sees that since a simplified

form of the spatial discretization operator is applied to the vast majority of the cells in the domain. The net

savings in operation count can be dramatic. In addition, throughout much of the domain, the solver operates
on pure Cartesian meshes. Without mesh skewing or stretching to hinder performance or stability, the solver

therefore may achieve its full order of accuracy in cells with purely Cartesian stencils.

While Cartesian mesh generators have largely overcome an important obstacle in the CFD process, solvers

which take full advantage of the approach have been less convincingly documented. Moreover, removal of
the mesh generation bottleneck from the analysis cycle places a renewed emphasis on flow solver efficiency.

The current research explores the issues of accuracy and efficiency. The approach uses domain-decomposi-
tion to target the current crop of shared and distributed memory computing platforms, and multilevel
smoothing to enhance convergence. Wherever possible, the solver uses an appropriately simplified operator

for the spatial discretization of the pure Cartesian cells. In this workshop paper, we present a brief outline of
the finite-volume discretization and multigrid scheme before shifting focus to the domain decomposition and

coarse mesh generation. Results are presented for a variety of model problems and 3-D configurations, and
these provide a basis for a preliminary assessment of the accuracy and efficiency of the solver.

SPATIAL AND TEMPORAL DISCRETIZATION

Embedded boundary Cartesian approaches discretize the computational domain with either "volume cells"

which are the adaptively Cartesian hexahedra filling the space away from boundaries, and "cut-cells" which
are formed by the Cartesian cells which actually intersect the surface. As shown by Figure 1, volume cells
always have six coordinate aligned faces, while cut-cells are considered to be arbitrarily shaped polyhedra.

"Split-cells" refers to a subset of cut-cells which are actually split into multiple, non-communicating, flow
polyhedra by the geometry. The solver uses a cell-centered finite-volume scheme for the spatial discretiza-

tion with the state vector stored at the cell-center of each of the Cartesian hexahedra. In boundary cut-cells,
these quantities are stored at the centroid of the actual polyhedron formed by the intersection of the Carte-

sian cell with the body. The fact that some cut-cells may indeed be split-cells indicates that the index space

of the control volumes is not necessarily the same as that of the set of Cartesian hexahedra from which the
mesh was constructed.

Within each control volume, the spatial integration scheme proceeds by traversing a face-based data struc-

ture to reconstruct a piecewise linear polynomial distribution of each state variable within the cell as in the
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linear-reconstruction approach of ref. [8]. A leas_squares procedure is used to provide gradient estimates
within each cell based on solution of the normal equations of the local mass matrix. State vectors are recon-

structed from the cell centroids to the face centroids, and the flux quadrature uses a midpoint integration
coupled with either a van Leer flux-vector splitting, or the approximate Riemann solver of Colella [9].

Evolution is performed using a modified Runge-Kutta scheme to drive a recursively implemented FAS (Full
Approximation Storage) multigrid scheme [1°]. This scheme may be used in conjunction with a local block

Jacobi preconditioner which requires the inversion of 5 x 5 matrix for each control volume in the computa-
tional domain [11]. When coupled with the upwind spatial discretization, this preconditioner has been shown
to efficiently cluster the residual eigenvalues for rapid annihilation by the multigrid scheme [13]. Implementa-

tion of such a preconditioner is planned in the near future.

Further details of the spatial and temporal operators and aspects of its implementation which impact the
overall efficiency of the approach will be presented in an upcoming paper [12].

DOMAIN DECOMPOSITION

One novel aspect of this work lies in its approach toward domain decomposition. The option exists to apply
a commercial grade uni-processor partitioner like the multi-level nested dissection tool in reference [141or its

multi-processor variant [15[. However, an attractive alternative stems from exploiting the nature of Cartesian

meshes. We have built-in a partitioner based upon the use of space-filling curves, constructed using either
the Morton or Peano-Hilbert orderings [16[. Both of these orderings have been used for the parallel solution
of N-body problems in computational physics [17[, and the later scheme has been proposed for application to

algebraic multigrid [181in the solution of elliptic PDEs and dynamic repartitioning of adaptive methods [19[.

Figure 2 shows both Peano-Hilbert and Morton space-filling curves constructed on Cartesian meshes at three
levels of refinement. In two dimensions, the basic building block of the Hilbert curves is a "U" shaped line

which visits each of 4 cells in a 2 x 2 block. Each subsequent level divides the previous level's cells by
nested dissection, creating subquadrants which are, themselves, visited by U shaped curves as well. This "U-
ordering" has locality properties which make it attractive as a partitioner [19[. Similar properties exist for the

Morton ordering which uses an "N" shaped curve as its basic building block. Properties and construction
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Figure 2: Space-filling curves used to order three Cartesian meshes in

bert or "U-ordering", b) Morton or "N-ordering".

two spatial dimensions: a) Peano-Hil-
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rules for these space-filling curves are discussed in refs. [20] and [21]. For the present, we note only that
such orderings have 3 important properties.

1. Mapping 9_d -+ U : The U and N orderings provide a unique mappings from the d-dimensional
physical space of the problem domain 9_d to a one-dimensional hyperspace, U, which one traverses

following the curve. In the U-order, two cells adjacent on the curve remain neighbors in this one-
dimensional hyperspace.

2. Locality: In the U-order, each cell visited by the curve is directly connected to two face-neigh-
boring cells which remain face-neighbors in the one dimensional hyperspace spanned by the curve.
Locality in N-ordered domains is almost as good [16].

3. Compactness: Encoding and decoding the Hilbert or Morton order requires only local informa-
tion. Following the integer indexing for Cartesian meshes outlined in ref. [2], a cell's 1-D index in
Umay be constructed using only that cell's integer coordinates in 9_d and the maximum number of
refinements that exist in the mesh. This aspect is in marked contrast to other partitioing schemes
based on recursive spectral bisection or other multilevel decomposition approaches which require
the entire connectivity matrix of the mesh in order to perform the partitioning.

To illustrate the property of compactness, consider the position of a cell i in the N-order. One way to con-

struct this mapping would be from a global operation such as a recursive lexicographic ordering of all cells
in the domain. Such a construction would not satisfy the property of compactness. Instead, the position of i

in the N-order may be deduced solely by inspection of cell i's integer coordinates (xi, Yi, zi).

Assume (_ci, _i, 5¢) is the bitwise representation of the integer coordinates (xi, Yi, zi) using m-bit integers. The

bit sequence {_c_5_ } denotes a 3-bit integer constructed by interleaving the first bit ofxi, Yi and z i. One can
then immediately compute cell i's position in Uas the 3m-bit integer {_c_5_c_?_. _m_m_m•"xi Yi zi } • Thus, sim-
ply by inspection of a cell's integer coordinates, we are able to directly calculate its position in the one-

dimensional space U without any additional information. Similarly compact construction rules exist for the
U-order[21].

Figure 3 illustrates these mapping and locality properties for an adapted two-dimensional Cartesian mesh,
partitioned into three subdomains. The figure demonstrates the fact that for adapted Cartesian meshes, the

hyperspace U may not be fully populated by cells in the mesh. However, since cell indices in U may be
explicitly formed, this poses no shortcoming.

The quality of the partitioing resulting from U-ordered meshes have been examined in Ref.[19]. and were

found to be competitive with respect to other popular partitioners. Weights can be assigned on a cell-by-cell
basis. One advantage of using this partitioning strategy stems from the observation that mesh refinement or

2-D physical space ,art 2

pa.rt1 part 3
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i
I,a • ....
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Figure 3: An adapted Cartesian mesh and associated space-filling curve based on the U-ordering of
9_2 --+ U with the U-ordering illustrating locality and mesh partitioing in two spatial dimensions. Par-

titions are indicated by the heavy dashed lines in the sketch
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i•iii:

Partitioned Domain

Exploded View of Partil_oning _

i:>ih

Figure 4: Partitioning of 6 level adapted mesh around a triple teardrop geometry with 240000 cells into

4 subdomains using space-filling curves. The mesh is shown by a collection of cutting planes

through each partition.

coarsening simply increases or decreases the population of U while leaving the relative order of elements

away from the adaptation unchanged. Re-mapping the new mesh into new subdomains therefore only moves
data at partition boundaries and avoids global remappings when cells adaptively refine during mesh adapta-

tion. Recent experience with a variety of global repartitioners suggest that the communication required to
conduct this remapping can be an order of magnitude more expensive than the repartitioning itselt f221. Addi-

tionally, since the partitioning is basically just a re-ordering of the mesh cells into the U-order, the entire
mesh may be stored as a single domain, which may then be partitioned into any number of subdomains on-

the-fly as it is read into the flow solver from mass storage. This approach permits the mesh to be stored as a
single unpartitioned file. In a heterogeneous computing environment where the number of available proces-

sors may not be known at the time of job submission, the value of such flexibility is self-evident.

Figure 4 shows an example of a three dimensional Cartesian mesh around a triple teardrop configuration par-

titioned using the U-order. The mesh in this figure contains 240000 cells and is indicated by several cutting
planes which have been passed through the mesh, with cells colored by partition number. The upper frame
shows the mesh and partition boundaries, while the lower frame offers further detail through an exploded

view of the same mesh. In determining partition boundaries in this example, cut-cells were weighted 10x as
compared to un-cut Cartesian hexahedra.
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SUBDOMAIN CONNECTIVITY MATRIX LOCALITY

Figure 5 illustrates the cell adjacency matrix

within a typical subdomain after applying the U-

ordering. Each cell face in the subdomain results

in a point on this graph whose coordinates are the

indices of the neighboring cells. As indicated on

the figure, this matrix is block structured, and the

regions stemming from the various cell types in

the subdomains are labeled. Computation of the

residual occurs in the two diagonal blocks labeled

"volume cells" and "cut-cells", while the overlap

regions are updated via data-exchange with neigh-

boring subdomains. Examination of the structure

of these diagonal blocks indicates high total band-

width requirements. The face list within each sub-

domain is sorted by the lowest cell index which

the face connects to, and thus a loop over the face

lists of either the volume or cut-cells accesses data

in these two blocks row-by-row, from the top

down. However, since the cells are clustered into

"arms" off the main diagonal, memory pages

loaded to access one cell will be subsequently hit

Pec_no H_ilbert Order_ing

--_.............................................._..._....................,,'...................:._,_._.............
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Figure 5: Connectivity matrix of a typical subdomain

after partitioning with the U-ordering. Various

cell types within the subdomain are labeled.

many times as other nearby cells are requested by subsequent faces. Despite this, further bandwidth reduc-

tion and diagonal dominance may still be advantageous on some cache-based computing architectures or for

use with some matrix inverters or preconditioners. The standard technique for alleviating this shortcoming is

further reordering within each of these blocks [231.

Provision is included for applying a RCM reordering [231 to the diagonal blocks in this matrix which pro-

duces a matrix with substantially reduced bandwidth. For cache-based machines, further re-ordering is also

possible by coloring the data on any given cache-line so that data-dependencies are avoided when loading

the data pipes on pipelining architectures, or for constructing short vectors on processors which support

short vector processing.

AUTOMATIC CONSTRUCTION OF COARSE GRIDS

A central issue in the implementation of multigrid smoothers on unstructured meshes is the construction of a

series of coarse grids for the smoother to act upon. However, since adaptively refined Cartesian grids are

based upon successive refinements of an initial coarse grid, there is a natural path for coarse grid construc-

tion. A variety of approaches have been suggested in the literature, however, the asymptotic coarsening ratio

in some of these has been insufficient to ensure that the method will extract the full benefit of multigrid.

Moreover, the approach in ref. [2] permits the cells to divide anisotropically and therefore, we revisit the

issue of efficient coarse mesh generation.

In contrast to coarse grid generation problems on unstructured (general) hexahedral, tetrahedral, or mixed

element meshes, coarse cells in Cartesian meshes can be designed to nest exactly (i.e. cells on the coarse

mesh are the precise boolean addition of cells on the fine mesh). In addition, the cells can be organized such

that any cell in the mesh may be located uniquely by a set of integer indices [21. The combination of these two

facts lead to an novel coarse mesh generation algorithm for adaptively refined Cartesian meshes. The asymp-

totic complexity of this algorithm is O(Nlog N), where Nis the number of cells in the fine mesh. This result

stems from the fact that the central operation is a standard quicksort routine 1, and all other operations may

1. This result could be improved upon through the use of a radix sort, or other sort which has a better time-
bound, however, quicksort is fast enough in most cases.
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Figure 6: (Left) A two dimensional adaptively refined Cartesian mesh. Cut-cells are shown shaded.

(Right) The same mesh, after reordering with a specially designed comparison operator in prepara-
tion for coarsening.

be performed in constant time.

Figure 6 displays a two dimensional, directionally refined Cartesian mesh which illustrates the coarse mesh

generation strategy. The mesh shown (left) is the input or "fine mesh" which the algorithm coarsens. The
boundary of a hypothetical body is indicated, and the crosshatching indicates where there are no cells in the

mesh. Gray shaded cells denote cut-hexahedra. To the right of this figure lies a second view of the mesh after

it has been sorted using a specially designed comparison operator. The cell indices in this mesh indicate the
sorted order, which is further illustrated by a partial sketch of the path shown through cells 9 16.

The comparison operator basically performs a recursive lexicographical ordering of cells which can coarsen

into the same coarse cell. Adaptively refined Cartesian meshes are formed by repeated subdivision of an ini-
tial coarse mesh (referred to as the level 0 mesh), therefore any cell, i, is traceable to an initial "parent cell"

in the level 0 mesh. Similarly, if cell i has been refined R times, it will have parent cells at levels 0 through
(R 1). If a cell has never been divided, then it is referred to as a "level 0 cell" and is identical to its level 0

parent.

1. Cells on the level 0 mesh are sorted in lexicographic order using the integer coordinates of their
level 0 parents as keys.

2. If a cell has been subdivided, recursively sort its children lexicographically.

This algorithm can be implemented with a single quicksort which uses a comparison operator which exam-

ines the integer indices of two input cells on a bit-by-bit basis (see ref. [12]). As noted above, its asymptotic
complexity is proportional to that of the sorting method used.

After sorting the fine mesh, coarsening proceeds in a straightforward manner. Cells are processed by a single
sweep through the sorted order. If a contiguous set of cells are found which coarsen to the same parent they
are coalesced into that parent. Cells which do not meet this criteria are "not coarsenable" and are injected to
the coarse mesh without modification.

Figure 7 (left) shows the coarse mesh resulting from one application of the coarsening algorithm, note that

fine grid cells on the level-0 mesh arefidly coarsened and do not coarsen beyond their initial size. The right

7

3

6 8

41 3 6 15

38 40

2 S 2 S 14

37 39

: 4 z 4 13

113 12 22 24 33 _5

Figure 7: Left: Adapted Cartesian mesh from Figure 6 after one coarsening. Outline of geometry is indi-

cated, and cut-cells are shown in grey. Right: Same mesh after one additional application of the
coarsening algorithm
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frame in this figure shows the mesh resulting from a second application of the coarsening operator.

Note that with this algorithm, cells won't coarsen in two situations: (1) if they are fully coarsened; or if

coarsening is suspended because one (or more) of the children of a given parent is subdivided. Application

of this algorithm to a variety of adapted Cartesian meshes on actual geometry (including a 3D wing, a Single
Stage to Orbit configuration and a subsonic business jet) revealed that it consistently produces coarse meshes

with coarsening ratios greater than 7:1. Finally, note that the coarse cells in fig. 7 are automatically con-
structed in the sorted order so that further coarsening does not require additional sorting.

One subtlety that the coarsening algorithm must contend with is indicated in Figure 8. The presence of split-

cells in the domain implies that, under some coarsening situations, cut-cells on the fine mesh may coarsen
into split-cells on the coarse grid. Alternatively, when fine grid split-cells coarsen into the same parent as un-

cut volume cells, cut- or split-cells may result. This apparent complication stems directly from the fact that
the index space of the control volumes is not the same as that of the Cartesian hexahedra from which these

control volumes were formed, and in three dimensions, a wide variety of such cases exist. To ensure accurate
construction of the coarse mesh, our algorithm insists that two cut/split-cells with the same parent must have

at least one common face to coalesce into the same control volume on the coarse grid.

PRELIMINARY RESULTS

The preliminary results presented in this section intend to investigate the global order of accuracy of the flow

solver, as well as the parallel scalability of the method using the SFC mesh partitioners. An investigation of
the effectiveness of the multigrid scheme will not be presented as such results are still premature. All com-

putations were performed on 1-32 processors of an SGI Origin 2000 equipped with MIPS R10000 proces-
sors running at 250Mhz. subdomain boundary information exchange is performed using shared a shared

memory programming paradigm, and care was taken to ensure that the memory required to store each sub-
domain is physically located on boards local to the processor which integrate each subdomain.

VERIFICATION AND GLOBAL ORDER OF ACCURACY

Before examining issues of modeling and parallel scalability, it is necessary to first verify that our imple-
mentation correctly solves the Euler equations, and to document the order of accuracy of the solver on a

actual meshes. This investigation relies upon a closed-form, analytic solution to the Euler equations for a
supersonic vortex model problem [241. The presence of an exact solution permits the investigation to examine

the truncation error of the discrete solution using a series of telescopic meshes. Since this is a shock-free
flow, the measured order of accuracy is not corrupted by limiter action near shocks, and the behavior is

indicative of the scheme's performance in smooth regions of a flow. Although this example is only two
dimensional, the full three dimensional solver was run using an 3-D geometry made by extrusion.

To investigate the truncation error of the scheme, the domain was initialized to the exact solution and inte-
grated one time step. The residual in each cell then offers a direct measure of the difference between the dis-

a)- __],,__ _'+ _ _/ b) _e -- +__t_ _ __,_,,-,x

FineMesh after OneCoarsening Fine Mesh after One Coarsening

Figure 8: Mesh coarsening examples in which the index space of the control volumes differs from that
of the Cartesian hexahedra from which these control volumes are formed. (a) Four cut-cells

become 2 split-cells when the mesh is coarsened, (b) 2 volume cells, and 4 split cells become 2

split-cells after coarsening.
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exact solution."

p(r) = Pi{

1

7 + 1M2[- 1 _ '

Figure 9: Overview of supersonic vortex model problem from ref. [24] used

to investigate the order of accuracy of the solver. Mesh sequence at right

shows series of 5 telescoping meshes used in the investigation, at condi-
tions:Min 2.25,pin 1/% Pin 1, r i 1, ro 1.384.

crete scheme and the governing equations, including the effects of boundary conditions.

Figure 9 presents an overview of the investigation. The sketch at the left shows the inviscid flow between

two concentric circular arcs, while the frame at the right shows the sequence of 5 Cartesian meshes used in
the investigation. The meshes were created by nested subdivision and while the coarsest of these grids had
105 cells in a 2D slice, the finest had over 21000 cells at the same station.

Figure 10 contains a plot of the L2 norm of density error resulting from this analysis. The error plot is
remarkably linear over the first 4 meshes, but shows signs of a slight tailing-off on the final mesh. Over the

first 4 meshes, the average order of accuracy is 1.88. If the finest mesh is included, this estimate drops to a
value of 1.82. Both of these slopes are comparable to those in the investigation of reconstruction schemes on

body-fitted unstructured meshes in ref. [24], and we note that the absolute magnitude of error in the present
(Cartesian) scheme is more than a factor of two lower than was reported in that investigation. The slight tail-

ing-off of the results for mesh 5 is believed to be a result of round-off error in computation of the error norm
is not surprising considering the extremely low levels of error measured on this mesh. This hypothesis, how-

ever, is still under investigation.

10-2

LU

*d
c

E
b
Z

10-3

10-4

10-5
0 1 2 3 4 5 6

No. of Mesh Refinements

Figure 10." L2 norm of density truncation error for sequence of refined meshes shown

in fig. 9.
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The results shown in fig. 10 were generated using the Colella flux function, however, results with the van
Leer option are essentially identical.

CONVERGENCE ON PARTITIONED

DOMAINS
10 _

10 _

1@

Adopting the domain decomposition with a single lo0

overlap cell permits a formulation which ensures to _

that the residuals computed within each cell at ,, to2
every timestep with one partitioning match those _ to3

for any other partitioning. Figure 11 illustrates this 5 to 4
property by documenting convergence of the maxi-

_ 10 _

mum residual of density for the supersonic vortex _ lo _
×

problem using a 250,000 cell mesh partitioned into _ lo7

1, 2, 4, and 8 subdomains. All histories in this fig- loo
ure collapse to the same line to within machine pre- loo
cision. As the legend indicates, this test was

10 0

performed using both the machine's default arith- lo
metic (SGI Origin 2000, cc option -OfitsO and lo'
IEEE-754 compliant arithmetic.

2nd Order(3 1) _h_ne nolimiter
........ i........ i......... i........ i......... i......... i........ i......... i.........

o\

H 1 padilion

< 1 part IEEE

: 2 parts

+ + 2 prociEEE

4parts

< 4parts IEEE

*= * 8 parts

\

\
\

\

\

....... , ........ , ......... , ........ , ......... , ......... ,........ , ......... , .........

200 400 600 800 1000 1200 1400 1600 1800

Iterations (3-stage R-K)

Figure 11: Comparison of convergence history using

ONERA M6 WING 1, 2, 4, and 8 subdomains using both default (SGI
Origin 2000, cc option -OfitsO and IEEE-754

With the preliminary verification complete, focus compliant arithmetic.

shifts to a three dimensional example of an ONERA M6 wing which has been widely cited in the literature.
This transonic M_ 0.84, cz 3.06 ° case is often used in the validation of inviscid solution techniques. This
test was performed at a relatively high Reynolds number (based on root chord) of 12 x 106125[, which mini-

mizes effects of the displacement thickness making accurate comparisons of sectional pressure distributions

possible. Other viscous effects in the experimental data are limited to a slight separation filling in the Cp dis-
tribution behind the lambda shock on the lee surface.

Simulation of this test was conducted using the geometry of a wing in free air, with the far-field boundary
located 30 chords from the wing. The final mesh contained 525000 control volumes, with 25000 cut-cells

and 528 split-cells. The mesh was partitioned into 8 subdomains using the Peano-Hilbert ordering described

iiiiiiiiiiiiiiiiiiiiiiiiiii   iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 12." Partitioned mesh and Cp contours for the ONERA M6 wing example. The mesh contains
525000 cells at 9 levels of refinement, mesh partitions are shown by color-coding and outlined in

heavy lines. Cp contours are plotted using a cell-by-cell reconstruction of the discrete solution.
M_ = 0.84, cz = 3.06, van Leer flux.
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in the preceding section. Figure 12 displays this mesh by three cutting planes. Cells on each cut plane are

color coded by subdomain. Along side the mesh, fig. 12 presents C)) contours on the wing surface, and sym-

metry plane resulting from a simulation using the van Leer flux option. This image clearly displays the well-

known lambda shock structure on the upper surface of the wing. Contours in this image were constructed

cell-by-cell, using the computed gradients within each cell. This method of plotting gives a more accurate

picture of the discrete solution, since fluxes are formed with this same reconstruction. The slight breaks in

the contour lines in some high gradient regions are a by-product of this cell-by-cell plotting. These solution

shown was converged 6 orders of magnitude (L 1 norm of density) using the van Leer flux option.

Figure 13 provides a quantitative assessment of the solution quality through pressure profiles at six spanwise

stations. This figure displays @ vs. x/c at spanwise stations at 20, 44, 65, 80, 90, and 95% span. The inboard

stations correctly display the double-shock on the upper surface, while stations at 90 and 95% confirm accu-

rate prediction of the merging of these shocks. The experimental data at stations 20 and 44% indicate that

the rear shock is followed by a mild separation bubble triggered by the shock-boundary layer interaction. As

is typical in such cases, the inviscid discrete solution locates this rear shock slightly behind its experimental

counterpart.

1

0.5

0

0.5

I

Span Station 20% Span Station 44%

1

0.5 14 ::: "_ ::_-:::::_

0. :

0 020.2 0.4 06 0.8 1 1.2 1.2

•:: :+

Span Station 65%

1

0.5

0

0.5

Span Station 80%

:::::::::::::::::::::::

02 0.4 0.6 0.8 1 1.2

1

0.5

o

o.5

1

Span Station 95%

:S;::_ / ========================

0.2 0.4 06 0.8 1 1.2 02 0.4 0.6 0.8 1 1.2

Figure 13: Cp vs. x/c for ONERA M6 wing example at six spanwise locations. M_ = 0.84, cz = 3.06 °.

Experimental data from ref. [25] shown as symbols, inviscid discrete solution shown with solid

line.
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PARALLEL SCALABILITY AND PERFORMANCE

Figure 14 contains preliminary results from

scalability testing. Tests were conducted on

from 1 to 32 processors on an Mips R10000

based SGI Origin 2000. The mesh in this test

contained 525000 cells. Each processor of this

machine has a 4Mb Level 2 cache, and two

processors on each board share the same local

memory. Examination of this plot shows gen-

erally good scalability, however, communica-

tion does appear to slow this particular

computation on 4 and 8 processors when the

problem initially gets spread over several

boards within the machine. On 32 processors

the timings show a "cache bubble" evidenced

by the fact that the results on 32 processors are

more than a factor of two faster than the tim-

ings on 16 processors. Table 1 shows the per-

processor execution rate and parallel speed-up

for this example. Results in this table clearly

show a 4% increase in per-processor execution

35 . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

-- _, Measured (Origin 2000, 250Mhz) /

30 ---- Ideal /

25 / /

/

_15 /

5 /:,_/_'*"

°_" ;_ _ 1'2 1'_ 2'0 A A 3'2 '3_
No. of Processors

Figure 14: Preliminary investigation of parallel scalabil-

ity of single mesh (no-multigrid) case. Data reflect

average results from 3 runs with each partitioning.

rate on 32 processors as each processor's L2 cache was very nearly sufficient to store the entire subdomain.

The table demonstrates no substantial decrease in performance with larger numbers of subdomains, and the

communication/computation ratio afforded by the partitioning does not appear to be uncompetative. Results

in Table 1 and in Figure 14 were obtained by averaging the results of 3 separate sets of tests since timings on

this machine are known to vary by as much as 10%.

Table 1: Parallel scalability and processing rate per processor. Results for each partitioning

reflect average of three runs. 525000 control volumes, 200 iterations _er test.

No. of CPUtime/CPU
Parallel Speed-up Mflops/CPU a Ideal Speedup

Processors (sec.)

1 2559 1 81.4 1

2 1315 1.94 81.9 2

4 865 2.96 72.77 4

8 383 5.76 77.57 8

16 188 13.61 78 16

32 90 28.37 82 32

a. Mflops counted using R10000 hardware counters on optimized code, with single cycle MADD

instruction disabled. Floating-point multiply, add, and divide each counted as one flop.

CONCLUSIONS AND CURRENT WORK

This paper presented preliminary verification and validation of a new, parallel, upwind solver for Cartesian

meshes. Comparison of the scheme's one-step truncation error with an analytic solution demonstrated an

achieved order of accuracy between 1.82 and 1.88. Preliminary validation by direct comparison to experi-

mental results on a three dimensional wing configuration was also performed, demonstrating that the dis-

crete solutions were competitive with other solution procedures. Preliminary documentation of a new on-

the-fly SFC based partitioning strategy was also presented. This strategy enables reordered meshes to be pre-
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sorted and stored as a single domain. This mesh can then be partitioned into any number of partitions at run
time. Investigations demonstrated that this decomposition strategy produces a parallel speed-up in excess of

28 on 32 processors with no net decrease in processing rate. Details of a new coarse mesh generation algo-
rithm for multilevel smoothers on Cartesian meshes were also presented. This algorithm generally achieves

mesh coarsening ratios in excess of 7 on adaptively refined meshes.

Development of this method continues, and examples on complex configurations at elevated Mach numbers

are planned in the immediate future. An investigation of multigrid efficiency for flows with complex geome-
try at a variety of Mach numbers is on-going.
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